Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Mol Biol ; 436(5): 168458, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38280482

RESUMO

Light-Oxygen-Voltage (LOV) flavoproteins transduce a light signal into variable signaling outputs via a structural rearrangement in the sensory core domain, which is then relayed to fused effector domains via α-helical linker elements. Short LOV proteins from Pseudomonadaceae consist of a LOV sensory core and N- and C-terminal α-helices of variable length, providing a simple model system to study the molecular mechanism of allosteric activation. Here we report the crystal structures of two LOV proteins from Pseudomonas fluorescens - SBW25-LOV in the fully light-adapted state and Pf5-LOV in the dark-state. In a comparative analysis of the Pseudomonadaceae short LOVs, the structures demonstrate light-induced rotation of the core domains and splaying of the proximal A'α and Jα helices in the N and C-termini, highlighting evidence for a conserved signal transduction mechanism. Another distinguishing feature of the Pseudomonadaceae short LOV protein family is their highly variable dark recovery, ranging from seconds to days. Understanding this variability is crucial for tuning the signaling behavior of LOV-based optogenetic tools. At 37 °C, SBW25-LOV and Pf5-LOV exhibit adduct state lifetimes of 1470 min and 3.6 min, respectively. To investigate this remarkable difference in dark recovery rates, we targeted three residues lining the solvent channel entrance to the chromophore pocket where we introduced mutations by exchanging the non-conserved amino acids from SBW25-LOV into Pf5-LOV and vice versa. Dark recovery kinetics of the resulting mutants, as well as MD simulations and solvent cavity calculations on the crystal structures suggest a correlation between solvent accessibility and adduct lifetime.


Assuntos
Proteínas de Bactérias , Flavoproteínas , Fotorreceptores Microbianos , Pseudomonas fluorescens , Luz , Oxigênio , Transdução de Sinais , Solventes , Flavoproteínas/química , Flavoproteínas/genética , Flavoproteínas/metabolismo , Domínios Proteicos , Conformação Proteica em alfa-Hélice , Pseudomonas fluorescens/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Optogenética , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Mutação , Cristalografia por Raios X
3.
J Mol Biol ; 436(5): 168451, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246412

RESUMO

Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to the phytochromes sensing red and far-red light reversibly. Only the cGMP phosphodiesterase/Adenylate cyclase/FhlA (GAF) domain is needed for chromophore incorporation and proper photoconversion. The CBCR GAF domains covalently ligate linear tetrapyrrole chromophores and show reversible photoconversion between two light-absorbing states. In most cases, the two light-absorbing states are stable under dark conditions, but in some cases, the photoproduct state undergoes thermal relaxation back to the dark-adapted state during thermal relaxation. In this study, we examined the engineered CBCR GAF domain, AnPixJg2_BV4. AnPixJg2_BV4 covalently binds biliverdin IX-alpha (BV) and shows reversible photoconversion between a far-red-absorbing Pfr dark-adapted state and an orange-absorbing Po photoproduct state. Because the BV is an intrinsic chromophore of mammalian cells and absorbs far-red light penetrating into deep tissues, BV-binding CBCR molecules are useful for the development of optogenetic and bioimaging tools used in mammals. To obtain a better developmental platform molecule, we performed site-saturation random mutagenesis on the Phe319 position. We succeeded in obtaining variant molecules with higher chromophore-binding efficiency and higher molar extinction coefficient. Furthermore, we observed a wide variation in thermal relaxation kinetics, with an 81-fold difference between the slowest and fastest rates. Both molecules with relatively slow and fast thermal relaxation would be advantageous for optogenetic control.


Assuntos
Proteínas de Bactérias , Biliverdina , Cianobactérias , Fotorreceptores Microbianos , Fitocromo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biliverdina/química , Cianobactérias/metabolismo , Luz , Mutagênese , Fitocromo/química , Conformação Proteica , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Ligação Proteica , Fenilalanina/química , Fenilalanina/genética , Simulação de Dinâmica Molecular
4.
J Mol Biol ; 436(5): 168227, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544357

RESUMO

The cyanobacteriochrome Slr1393 can be photoconverted between a red (Pr) and green absorbing form (Pg). The recently determined crystal structures of both states suggest a major movement of Trp496 from a stacking interaction with ring D of the phycocyanobilin (PCB) chromophore in Pr to a position outside the chromophore pocket in Pg. Here, we investigated the role of this amino acid during photoconversion in solution using engineered protein variants in which Trp496 was substituted by natural and non-natural amino acids. These variants and the native protein were studied by various spectroscopic techniques (UV-vis absorption, fluorescence, IR, NIR and UV resonance Raman) complemented by theoretical approaches. Trp496 is shown to affect the electronic transition of PCB and to be essential for the thermal equilibrium between Pr and an intermediate state O600. However, Trp496 is not required to stabilize the tilted orientation of ring D in Pr, and does not play a role in the secondary structure changes of Slr1393 during the Pr/Pg transition. The present results confirm the re-orientation of Trp496 upon Pr â†’ Pg conversion, but do not provide evidence of a major change in the microenvironment of this residue. Structural models indicate the penetration of water molecules into the chromophore pocket in both Pr and Pg states and thus water-Trp contacts, which can readily account for the subtle spectral changes between Pr and Pg. Thus, we conclude that reorientation of Trp496 during the Pr-to-Pg photoconversion in solution is not associated with a major change in the dielectric environment in the two states.


Assuntos
Proteínas de Bactérias , Fotorreceptores Microbianos , Fitocromo , Synechocystis , Triptofano , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fitocromo/química , Fitocromo/genética , Triptofano/química , Triptofano/genética , Água/química , Conformação Proteica
5.
J Mol Biol ; 436(5): 168257, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657609

RESUMO

Sensory photoreceptors abound in nature and enable organisms to adapt behavior, development, and physiology to environmental light. In optogenetics, photoreceptors allow spatiotemporally precise, reversible, and non-invasive control by light of cellular processes. Notwithstanding the development of numerous optogenetic circuits, an unmet demand exists for efficient systems sensitive to red light, given its superior penetration of biological tissue. Bacteriophytochrome photoreceptors sense the ratio of red and far-red light to regulate the activity of enzymatic effector modules. The recombination of bacteriophytochrome photosensor modules with cyclase effectors underlies photoactivated adenylyl cyclases (PAC) that catalyze the synthesis of the ubiquitous second messenger 3', 5'-cyclic adenosine monophosphate (cAMP). Via homologous exchanges of the photosensor unit, we devised novel PACs, with the variant DmPAC exhibiting 40-fold activation of cyclase activity under red light, thus surpassing previous red-light-responsive PACs. Modifications of the PHY tongue modulated the responses to red and far-red light. Exchanges of the cyclase effector offer an avenue to further enhancing PACs but require optimization of the linker to the photosensor. DmPAC and a derivative for 3', 5'-cyclic guanosine monophosphate allow the manipulation of cyclic-nucleotide-dependent processes in mammalian cells by red light. Taken together, we advance the optogenetic control of second-messenger signaling and provide insight into the signaling and design of bacteriophytochrome receptors.


Assuntos
Adenilil Ciclases , AMP Cíclico , Deinococcus , Fotorreceptores Microbianos , Fitocromo , Proteínas Recombinantes de Fusão , Animais , Adenilil Ciclases/química , Adenilil Ciclases/genética , AMP Cíclico/química , Luz , Optogenética , Transdução de Sinais , Engenharia de Proteínas , Fitocromo/química , Fitocromo/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética
6.
J Mol Biol ; 436(5): 168412, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38135178

RESUMO

For microbes and their hosts, sensing of external cues is essential for their survival. For example, in the case of plant associated microbes, the light absorbing pigment composition of the plant as well as the ambient light conditions determine the well-being of the microbe. In addition to light sensing, some microbes can utilize xanthorhodopsin based proton pumps and bacterial photosynthetic complexes that work in parallel for energy production. They are called dual phototrophic systems. Light sensing requirements in these type of systems are obviously demanding. In nature, the photosensing machinery follows mainly the same composition in all organisms. However, the specific role of each photosensor in specific light conditions is elusive. In this study, we provide an overall picture of photosensors present in dual phototrophic systems. We compare the genomes of the photosensor proteins from dual phototrophs to those from similar microbes with "single" phototrophicity or microbes without phototrophicity. We find that the dual phototrophic bacteria obtain a larger variety of photosensors than their light inactive counterparts. Their rich domain composition and functional repertoire remains similar across all microbial photosensors. Our study calls further investigations of this particular group of bacteria. This includes protein specific biophysical characterization in vitro, microbiological studies, as well as clarification of the ecological meaning of their host microbial interactions.


Assuntos
Proteínas de Bactérias , Fotorreceptores Microbianos , Fotossíntese , Sphingomonas , Genômica , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Sphingomonas/genética , Sphingomonas/fisiologia , Genes Bacterianos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
7.
FEBS J ; 290(20): 4999-5015, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37488966

RESUMO

Cyanobacteriochrome (CBCR) photoreceptors are distantly related to the canonical red/far-red reversible phytochrome photoreceptors. In the case of the CBCRs, only the GAF domain is required for chromophore incorporation and photoconversion. The GAF domains of CBCR are highly diversified into many lineages to sense various colors of light. These CBCR GAF domains are divided into two types: those possessing only the canonical Cys residue and those with both canonical and second Cys residues. The canonical Cys residue stably ligates to the chromophore in both cases. The second Cys residue mostly shows reversible adduct formation with the chromophore during photoconversion for spectral tuning. In this study, we focused on the CBCR GAF domain AnPixJg2_BV4, which possesses only the canonical Cys residue. AnPixJg2_BV4 covalently ligates to the biliverdin (BV) chromophore and shows far-red/orange reversible photoconversion. Because BV is a mammalian intrinsic chromophore, BV-binding molecules are advantageous for in vivo optogenetic and bioimaging tool development. To obtain a better developmental platform molecule, we performed site-saturation random mutagenesis and serendipitously obtained a unique variant molecule that showed far-red/blue reversible photoconversion, in which the Cys residue was introduced near the chromophore. This introduced Cys residue functioned as the second Cys residue that reversibly ligated with the chromophore. Because the position of the introduced Cys residue is distinct from the known second Cys residues, the variant molecule obtained in this study would expand our knowledge about the spectral tuning mechanism of CBCRs and contribute to tool development.


Assuntos
Cianobactérias , Fotorreceptores Microbianos , Fitocromo , Biliverdina/metabolismo , Cianobactérias/metabolismo , Cisteína/metabolismo , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Fitocromo/química , Proteínas de Bactérias/metabolismo
8.
Photochem Photobiol Sci ; 22(4): 713-727, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36480084

RESUMO

Light, oxygen, voltage (LOV) photoreceptors are widely distributed throughout all kingdoms of life, and have in recent years, due to their modular nature, been broadly used as sensor domains for the construction of optogenetic tools. For understanding photoreceptor function as well as for optogenetic tool design and fine-tuning, a detailed knowledge of the photophysics, photochemistry, and structural changes underlying the LOV signaling paradigm is instrumental. Mutations that alter the lifetime of the photo-adduct signaling state represent a convenient handle to tune LOV sensor on/off kinetics and, thus, steady-state on/off equilibria of the photoreceptor (or optogenetic switch). Such mutations, however, should ideally only influence sensor kinetics, while being benign with regard to the nature of the structural changes that are induced by illumination, i.e., they should not result in a disruption of signal transduction. In the present study, we identify a conserved hydrophobic pocket for which mutations have a strong impact on the adduct-state lifetime across different LOV photoreceptor families. Using the slow cycling bacterial short LOV photoreceptor PpSB1-LOV, we show that the I48T mutation within this pocket, which accelerates adduct rupture, is otherwise structurally and mechanistically benign, i.e., light-induced structural changes, as probed by NMR spectroscopy and X-ray crystallography, are not altered in the variant. Additional mutations within the pocket of PpSB1-LOV and the introduction of homologous mutations in the LOV photoreceptor YtvA of Bacillus subtilis and the Avena sativa LOV2 domain result in similarly altered kinetics. Given the conserved nature of the corresponding structural region, the here identified mutations should find application in dark-recovery tuning of optogenetic tools and LOV photoreceptors, alike.


Assuntos
Fotorreceptores Microbianos , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/química , Oxigênio/química , Fotoquímica , Mutação , Espectroscopia de Ressonância Magnética , Luz
9.
Adv Biol (Weinh) ; 6(7): e2000337, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35481696

RESUMO

In the rapidly expanding field of molecular optogenetics, the performance of the engineered systems relies on the switching properties of the underlying genetically encoded photoreceptors. In this study, the bacterial phytochromes Cph1 and DrBphP are engineered, recombinantly produced in Escherichia coli, and characterized regarding their switching properties in order to synthesize biohybrid hydrogels with increased light-responsive stiffness modulations. The R472A mutant of the cyanobacterial phytochrome 1 (Cph1) is identified to confer the phytochrome-based hydrogels with an increased dynamic range for the storage modulus but a different light-response for the loss modulus compared to the original Cph1-based hydrogel. Stiffness measurements of human atrial fibroblasts grown on these hydrogels suggest that differences in the loss modulus at comparable changes in the storage modulus affect cell stiffness and thus underline the importance of matrix viscoelasticity on cellular mechanotransduction. The hydrogels presented here are of interest for analyzing how mammalian cells respond to dynamic viscoelastic cues. Moreover, the Cph1-R472A mutant, as well as the benchmarking of the other phytochrome variants, are expected to foster the development and performance of future optogenetic systems.


Assuntos
Proteínas de Bactérias , Hidrogéis , Mecanotransdução Celular , Optogenética , Fotorreceptores Microbianos , Fitocromo , Proteínas Quinases , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/efeitos da radiação , Benchmarking , Cianobactérias/genética , Escherichia coli/metabolismo , Fibroblastos , Engenharia Genética , Humanos , Hidrogéis/química , Mecanotransdução Celular/efeitos da radiação , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/efeitos da radiação , Fitocromo/química , Fitocromo/genética , Fitocromo/efeitos da radiação , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/efeitos da radiação , Viscosidade
10.
Microb Cell Fact ; 21(1): 7, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991586

RESUMO

BACKGROUND: Cyanobacteria are engineered via heterologous biosynthetic pathways to produce value-added chemicals via photosynthesis. Various chemicals have been successfully produced in engineered cyanobacteria. Chemical inducer-dependent promoters are used to induce the expression of target biosynthetic pathway genes. A chemical inducer is not ideal for large-scale reactions owing to its high cost; therefore, it is important to develop scaling-up methods to avoid their use. In this study, we designed a green light-inducible alcohol production system using the CcaS/CcaR green light gene expression system in the cyanobacterium Synechocystis sp. PCC 6803 (PCC 6803). RESULTS: To establish the green light-inducible production of isobutanol and 3-methyl-1-butanol (3MB) in PCC 6803, keto-acid decarboxylase (kdc) and alcohol dehydrogenase (adh) were expressed under the control of the CcaS/CcaR system. Increases in the transcription level were induced by irradiation with red and green light without severe effects on host cell growth. We found that the production of isobutanol and 3MB from carbon dioxide (CO2) was induced under red and green light illumination and was substantially repressed under red light illumination alone. Finally, production titers of isobutanol and 3MB reached 238 mg L-1 and 75 mg L-1, respectively, in 5 days under red and green light illumination, and these values are comparable to those reported in previous studies using chemical inducers. CONCLUSION: A green light-induced alcohol production system was successfully integrated into cyanobacteria to produce value-added chemicals without using expensive chemical inducers. The green light-regulated production of isobutanol and 3MB from CO2 is eco-friendly and cost-effective. This study demonstrates that light regulation is a potential tool for producing chemicals and increases the feasibility of cyanobacterial bioprocesses.


Assuntos
Butanóis/metabolismo , Engenharia Metabólica , Pentanóis/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Luz , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Fotossíntese , Regiões Promotoras Genéticas , Synechocystis/crescimento & desenvolvimento
11.
PLoS Genet ; 17(10): e1009845, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34679095

RESUMO

Fungi sense light of different wavelengths using blue-, green-, and red-light photoreceptors. Blue light sensing requires the "white-collar" proteins with flavin as chromophore, and red light is sensed through phytochrome. Here we analyzed genome-wide gene expression changes caused by short-term, low-light intensity illumination with blue-, red- or far-red light in Aspergillus nidulans and found that more than 1100 genes were differentially regulated. The largest number of up- and downregulated genes depended on the phytochrome FphA and the attached HOG pathway. FphA and the white-collar orthologue LreA fulfill activating but also repressing functions under all light conditions and both appear to have roles in the dark. Additionally, we found about 100 genes, which are red-light induced in the absence of phytochrome, suggesting alternative red-light sensing systems. We also found blue-light induced genes in the absence of the blue-light receptor LreA. We present evidence that cryptochrome may be part of this regulatory cue, but that phytochrome is essential for the response. In addition to in vivo data showing that FphA is involved in blue-light sensing, we performed spectroscopy of purified phytochrome and show that it responds indeed to blue light.


Assuntos
Aspergillus nidulans/genética , Genes Reguladores/genética , Células Fotorreceptoras/fisiologia , Fotorreceptores Microbianos/genética , Criptocromos/genética , Proteínas Fúngicas/genética , Estudo de Associação Genômica Ampla/métodos , Luz , Fitocromo/genética
12.
Protein Sci ; 30(12): 2359-2372, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34590762

RESUMO

Photo-control of affinity reagents offers a general approach for high-resolution spatiotemporal control of diverse molecular processes. In an effort to develop general design principles for a photo-controlled affinity reagent, we took a structure-based approach to the design of a photoswitchable Z-domain, among the simplest of affinity reagent scaffolds. A chimera, designated Z-PYP, of photoactive yellow protein (PYP) and the Z-domain, was designed based on the concept of mutually exclusive folding. NMR analysis indicated that, in the dark, the PYP domain of the chimera was folded, and the Z-domain was unfolded. Blue light caused loss of structure in PYP and a two- to sixfold change in the apparent affinity of Z-PYP for its target as determined using size exclusion chromatography, UV-Vis based assays, and enyzme-linked immunosorbent assay (ELISA). A thermodynamic model indicated that mutations to decrease Z-domain folding energy would alter target affinity without loss of switching. This prediction was confirmed experimentally with a double alanine mutant in helix 3 of the Z-domain of the chimera (Z-PYP-AA) showing >30-fold lower dark-state binding and no loss in switching. The effect of decreased dark-state binding affinity was tested in a two-hybrid transcriptional control format and enabled pronounced light/dark differences in yeast growth in vivo. Finally, the design was transferable to the αZ-Taq affibody enabling tunable light-dependent binding both in vitro and in vivo to the Z-Taq target. This system thus provides a framework for the focused development of light switchable affibodies for a range of targets.


Assuntos
Anticorpos/química , Proteínas de Bactérias/química , Optogenética/métodos , Fotorreceptores Microbianos/química , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/química , Anticorpos/metabolismo , Afinidade de Anticorpos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Luz , Processos Fotoquímicos , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
13.
Phys Chem Chem Phys ; 23(37): 20867-20874, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34374395

RESUMO

Cyanobacteriochromes (CBCRs) are bi-stable photoreceptor proteins with high potential for biotechnological applications. Most of these proteins utilize phycocyanobilin (PCB) as a light-sensing co-factor, which is unique to cyanobacteria, but some variants also incorporate biliverdin (BV). The latter are of particular interest for biotechnology due to the natural abundance and red-shifted absorption of BV. Here, AmI-g2 was investigated, a CBCR capable of binding both PCB and BV. The assembly kinetics and primary photochemistry of AmI-g2 with both chromophores were studied in vitro. The assembly reaction with PCB is roughly 10× faster than BV, and the formation of a non-covalent intermediate was identified as the rate-limiting step in the case of BV. This step is fast for PCB, where the formation of the covalent thioether bond between AmI-g2 and PCB becomes rate-limiting. The photochemical quantum yields of the forward and backward reactions of AmI-g2 were estimated and discussed in the context of homologous CBCRs.


Assuntos
Biliverdina/química , Cianobactérias/metabolismo , Fotorreceptores Microbianos/química , Ficobilinas/química , Ficocianina/química , Biliverdina/metabolismo , Cinética , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Ficobilinas/metabolismo , Ficocianina/metabolismo , Ligação Proteica , Teoria Quântica , Espectrofotometria
14.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445244

RESUMO

Optogenetic switches allow light-controlled gene expression with reversible and spatiotemporal resolution. In Saccharomyces cerevisiae, optogenetic tools hold great potential for a variety of metabolic engineering and biotechnology applications. In this work, we report on the modular optimization of the fungal light-oxygen-voltage (FUN-LOV) system, an optogenetic switch based on photoreceptors from the fungus Neurospora crassa. We also describe new switch variants obtained by replacing the Gal4 DNA-binding domain (DBD) of FUN-LOV with nine different DBDs from yeast transcription factors of the zinc cluster family. Among the tested modules, the variant carrying the Hap1p DBD, which we call "HAP-LOV", displayed higher levels of luciferase expression upon induction compared to FUN-LOV. Further, the combination of the Hap1p DBD with either p65 or VP16 activation domains also resulted in higher levels of reporter expression compared to the original switch. Finally, we assessed the effects of the plasmid copy number and promoter strength controlling the expression of the FUN-LOV and HAP-LOV components, and observed that when low-copy plasmids and strong promoters were used, a stronger response was achieved in both systems. Altogether, we describe a new set of blue-light optogenetic switches carrying different protein modules, which expands the available suite of optogenetic tools in yeast and can additionally be applied to other systems.


Assuntos
Proteínas Fúngicas , Microrganismos Geneticamente Modificados , Neurospora crassa/genética , Optogenética , Fotorreceptores Microbianos , Saccharomyces cerevisiae , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Neurospora crassa/metabolismo , Fotorreceptores Microbianos/biossíntese , Fotorreceptores Microbianos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Int J Mol Sci ; 22(10)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065754

RESUMO

Cyanobacteriochromes (CBCRs) are promising optogenetic tools for their diverse absorption properties with a single compact cofactor-binding domain. We previously uncovered the ultrafast reversible photoswitching dynamics of a red/green photoreceptor AnPixJg2, which binds phycocyanobilin (PCB) that is unavailable in mammalian cells. Biliverdin (BV) is a mammalian cofactor with a similar structure to PCB but exhibits redder absorption. To improve the AnPixJg2 feasibility in mammalian applications, AnPixJg2_BV4 with only four mutations has been engineered to incorporate BV. Herein, we implemented femtosecond transient absorption (fs-TA) and ground state femtosecond stimulated Raman spectroscopy (GS-FSRS) to uncover transient electronic dynamics on molecular time scales and key structural motions responsible for the photoconversion of AnPixJg2_BV4 with PCB (Bpcb) and BV (Bbv) cofactors in comparison with the parent AnPixJg2 (Apcb). Bpcb adopts the same photoconversion scheme as Apcb, while BV4 mutations create a less bulky environment around the cofactor D ring that promotes a faster twist. The engineered Bbv employs a reversible clockwise/counterclockwise photoswitching that requires a two-step twist on ~5 and 35 picosecond (ps) time scales. The primary forward Pfr → Po transition displays equal amplitude weights between the two processes before reaching a conical intersection. In contrast, the primary reverse Po → Pfr transition shows a 2:1 weight ratio of the ~35 ps over 5 ps component, implying notable changes to the D-ring-twisting pathway. Moreover, we performed pre-resonance GS-FSRS and quantum calculations to identify the Bbv vibrational marker bands at ~659,797, and 1225 cm-1. These modes reveal a stronger H-bonding network around the BV cofactor A ring with BV4 mutations, corroborating the D-ring-dominant reversible photoswitching pathway in the excited state. Implementation of BV4 mutations in other PCB-binding GAF domains like AnPixJg4, AM1_1870g3, and NpF2164g5 could promote similar efficient reversible photoswitching for more directional bioimaging and optogenetic applications, and inspire other bioengineering advances.


Assuntos
Biliverdina/química , Cianobactérias/genética , Fotorreceptores Microbianos/química , Fitocromo/química , Substituição de Aminoácidos , Biliverdina/genética , Sítios de Ligação , Cianobactérias/metabolismo , Eletrônica , Cinética , Processos Fotoquímicos , Fotorreceptores Microbianos/genética , Fitocromo/genética , Engenharia de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Análise Espectral , Análise Espectral Raman , Tempo , Fatores de Tempo
16.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972439

RESUMO

Cyanobacteriochromes (CBCRs) are bilin-binding photosensors of the phytochrome superfamily that show remarkable spectral diversity. The green/red CBCR subfamily is important for regulating chromatic acclimation of photosynthetic antenna in cyanobacteria and is applied for optogenetic control of gene expression in synthetic biology. It is suggested that the absorption change of this subfamily is caused by the bilin C15-Z/C15-E photoisomerization and a subsequent change in the bilin protonation state. However, structural information and direct evidence of the bilin protonation state are lacking. Here, we report a high-resolution (1.63Å) crystal structure of the bilin-binding domain of the chromatic acclimation sensor RcaE in the red-absorbing photoproduct state. The bilin is buried within a "bucket" consisting of hydrophobic residues, in which the bilin configuration/conformation is C5-Z,syn/C10-Z,syn/C15-E,syn with the A- through C-rings coplanar and the D-ring tilted. Three pyrrole nitrogens of the A- through C-rings are covered in the α-face with a hydrophobic lid of Leu249 influencing the bilin pKa, whereas they are directly hydrogen bonded in the ß-face with the carboxyl group of Glu217. Glu217 is further connected to a cluster of waters forming a hole in the bucket, which are in exchange with solvent waters in molecular dynamics simulation. We propose that the "leaky bucket" structure functions as a proton exit/influx pathway upon photoconversion. NMR analysis demonstrated that the four pyrrole nitrogen atoms are indeed fully protonated in the red-absorbing state, but one of them, most likely the B-ring nitrogen, is deprotonated in the green-absorbing state. These findings deepen our understanding of the diverse spectral tuning mechanisms present in CBCRs.


Assuntos
Proteínas de Bactérias/química , Pigmentos Biliares/química , Complexos de Proteínas Captadores de Luz/química , Fotorreceptores Microbianos/química , Fitocromo/química , Prótons , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pigmentos Biliares/genética , Pigmentos Biliares/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Cianobactérias/química , Cianobactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Simulação de Dinâmica Molecular , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Pirróis/química , Pirróis/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
J Phys Chem B ; 125(5): 1331-1342, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33523656

RESUMO

Cyanobacteriochromes (CBCRs) are photoreceptors of the phytochrome superfamily showing remarkable variability in the wavelengths of the first electronic transition-sometimes denoted as Q band-compared to canonical phytochromes. Both classes carry the same cofactor, a bilin, but the molecular basis for the wide variation of their absorption properties is still a matter of debate. The interaction between the cofactor and the surrounding protein moiety has been proposed as a possible tuning factor. Here, we address the impact of hydrogen-bonding interaction between the covalently bound tetrapyrrole cofactor (phycocyanobilin, PCB) and a conserved tyrosine residue (Y302) in the second GAF (cGMP-specific phosphodiesterase, adenylyl cyclases, and FhlA) domain of the red-/green-switching CBCR AnPixJ (AnPixJg2). In the wild type, AnPixJg2 shows absorption maxima of 648 and 543 nm for the dark-adapted (Pr) and photoproduct (Pg) states, respectively. The Y302F mutation leads to the occurrence of an additional absorption band at 687 nm, which is assigned to a new spectroscopically identified sub-state called PIII. Similar spectral changes result upon mutating the Y302F-homologue in another representative red-/green-switching CBCR, Slr1393g3. Molecular dynamics simulations on the dark-adapted state suggest that the removal of the hydrogen bond leads to an additional PCB sub-state differing in its A- and D-ring geometries. The origin of the Q band satellite in the dark-adapted state is discussed.


Assuntos
Cianobactérias , Fotorreceptores Microbianos , Fitocromo , Proteínas de Bactérias/genética , Pigmentos Biliares , Ligação de Hidrogênio , Fotorreceptores Microbianos/genética , Fitocromo/genética , Propionatos , Tirosina
18.
Biochem J ; 478(5): 1043-1059, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33559683

RESUMO

Cyanobacteriochromes are linear tetrapyrrole-binding photoreceptors produced by cyanobacteria. Their chromophore-binding GAF domains are categorized into many lineages. Among them, dual Cys-type cyanobacteriochrome GAF domains possessing not only a highly conserved 'first Cys' but also a 'second Cys' are found from multiple lineages. The first Cys stably attaches to C31 of the A-ring, while the second Cys mostly shows reversible ligation to the C10 of the chromophore. Notably, the position of the second Cys in the primary sequence is diversified, and the most abundant dual Cys-type GAF domains have a 'second Cys' within the DXCF motif, which are called DXCF GAF domains. It has been long known that the second Cys in the DXCF GAF domains not only shows the reversible ligation but also is involved in isomerization activity (reduction in C4=C5 double bond) from the initially incorporated phycocyanobilin to phycoviolobilin. However, comprehensive site-directed mutagenesis on the DXCF GAF domains, AM1_6305g1 and AM1_1499g1, revealed that the second Cys is dispensable for isomerization activity, in which three residues participate by fixing the C- and D-rings. Fixation of the chromophore on both sides of the C5 bridge is necessary, even though one side of the fixation site is far from this bridge, with the other side at C31 fixed by the first Cys.


Assuntos
Cianobactérias/metabolismo , Cisteína/química , Mutação , Fotorreceptores Microbianos/metabolismo , Ficobilinas/biossíntese , Fitocromo/metabolismo , Cisteína/genética , Cisteína/metabolismo , Mutagênese Sítio-Dirigida , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fitocromo/química , Fitocromo/genética , Conformação Proteica , Domínios Proteicos
19.
J Gen Appl Microbiol ; 67(2): 54-58, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-33342920

RESUMO

Phototaxis is a phenomenon where cyanobacteria move toward a light source. Previous studies have shown that the blue-light-using-flavin (BLUF)-type photoreceptor PixD and the response regulator-like protein PixE control the phototaxis in the cyanobacterium Synechocystis sp. PCC 6803. The pixD-null mutant moves away from light, whereas WT, pixE mutant, and pixD pixE double mutant move toward the light. This indicates that PixE functions downstream of PixD and influences the direction of movement. However, it is still unclear how the light signal received by PixD is transmitted to PixE, and then subsequently transmitted to the type IV pili motor mechanism. Here, we investigated intracellular localization and oligomerization of PixD and PixE to elucidate mechanisms of phototaxis regulation. Blue-native PAGE analysis, coupled with western blotting, indicated that most PixD exist as a dimer in soluble fractions, whereas PixE localized in ~250 kDa and ~450 kDa protein complexes in membrane fractions. When blue-native PAGE was performed after illuminating the membrane fractions with blue light, PixE levels in the ~250 kDa and ~450 kDa complexes were reduced and increased, respectively. These results suggest that PixE, localized in the ~450 kDa complex, controls activity of the motor ATPase PilB1 to regulate pilus motility.


Assuntos
Proteínas de Bactérias/metabolismo , Fotorreceptores Microbianos/metabolismo , Synechocystis/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Luz , Transdução de Sinal Luminoso , Modelos Biológicos , Mutação , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fototaxia , Multimerização Proteica
20.
Mol Plant Pathol ; 21(12): 1606-1619, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33029921

RESUMO

Adaptation and efficient colonization of the phyllosphere are essential processes for the switch to an epiphytic stage in foliar bacterial pathogens. Here, we explore the interplay among light perception and global transcriptomic alterations in epiphytic populations of the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 (PsPto) following contact with tomato leaves. We found that blue-light perception by PsPto on leaf surfaces is required for optimal colonization. Blue light triggers the activation of metabolic activity and increases the transcript levels of five chemoreceptors through the function of light oxygen voltage and BphP1 photoreceptors. The inactivation of PSPTO_1008 and PSPTO_2526 chemoreceptors causes a reduction in virulence. Our results indicate that during PsPto interaction with tomato plants, light perception, chemotaxis, and virulence are highly interwoven processes.


Assuntos
Proteínas de Bactérias/metabolismo , Fotorreceptores Microbianos/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/efeitos da radiação , Solanum lycopersicum/microbiologia , Transcriptoma/efeitos da radiação , Proteínas de Bactérias/genética , Quimiotaxia/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz , Fotorreceptores Microbianos/genética , Folhas de Planta/microbiologia , Folhas de Planta/efeitos da radiação , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Virulência/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA